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Abstract Chronoamperometry of reversible redox
reactions with the insertion of cations into solid parti-
cles immobilised at an electrode surface is analysed
theoretically using a semiin®nite planar di�usion model.
A coupled di�usion of electrons and ions within the
crystal lattice is separated in two di�erential equations.
The redox reaction is initiated by the polarisation of the
three-phase boundary, where the crystal is in contact
with both the electrode and the solution. From this
contact line the redox reaction advances on the surface
and into the crystal body by the di�usion of ions and
conductance of electrons. The e�ects of the geometry
and conductivity of the particles on the current are
discussed.

Key words Chronoamperometry � Simulation �
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Introduction

Abrasive stripping voltammetry is a new electroana-
lytical technique for the study of the electrochemical
properties of solid materials [1±3]. It is based upon a
preliminary mechanical transfer of trace amounts of a
solid sample onto the surface of an electrode. The sur-
face which is contaminated by traces of a powder can be
used directly as a modi®ed working electrode in volt-
ammetric measurements. Many microcrystalline parti-
cles immobilised at the electrode surface exhibit mixed
ionic and electronic transport [4±6]. Electroactive
components of solid compounds can be reduced or

oxidised if the transfer of electrons is simultaneously
followed by the insertion or expulsion of ions. The
transport of electrons and that of ions through solid
particles are coupled and proceed at the same rate be-
cause of electroneutrality [7]. The fastest species move
ahead and generate an electric ®eld in such a way that
the faster species are slowed down and the slower ones
are accelerated. At the surface of particles the ions are
exchanged with the solution, and from there they may
advance into the body of microcrystals. The electrons
are supplied from the contacts of the particle with the
electrode surface. The ¯uxes of both electrons and ions
are caused by the gradient of the electrochemical po-
tential in the solid compound. These ¯uxes obey Fick's
laws of di�usion [7]. It was previously demonstrated
that the Nernstian equilibrium was ®rst established at
the three-phase boundary, where the particle, the solu-
tion and the electrode are in contact [8]. This boundary
is a line which surrounds the contact plane between the
microcrystal and the electrode surface. From this line
the redox reaction may advance along the surface and
into the body of the particle. In this paper, a simple
model of such insertion reactions is developed. It has
been shown in experimental studies that some reactions
are initially surface con®ned [12, 13], whereas others
advance throughout the crystal from the very beginning
[14]. The locus of the electrochemical reaction is always
the double layer between the electrode (e.g. graphite)
and the solid particle. The starting line of the electro-
chemical reaction is where the three phases, viz. elec-
trode, solid compound and electrolyte solution, meet
each other.

Theory and discussion

A redox reaction with the insertion of cation C� is
considered:

fCmAXg � neÿ � n C�
� �  ���! fCm�nBXg �I�
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(Species enclosed by braces are con®ned to the solid
state and species enclosed by square brackets are pres-
ent in the electrolyte solution.)

It is assumed that the Nernst equilibrium is estab-
lished at the three-phase boundary:

afCmAXg � an
�C��;x�0 � afCm�nBXg exp nF E ÿ E0

ÿ �
=RT

� �1�
where E is the electrode potential and E0 is a standard
potential of the redox reaction (I). E0 depends on the
electrolyte concentration according to the following
equation [9]:

E0 � E0
A=B � �RT=nF � ln�K� �2�

where E0
A=B

is a standard potential of the partial redox

reaction fCmAXg � neÿ �! � fCmBXgnÿ, and K is an
equilibrium constant of the ion-transfer reaction:
fCmBXgnÿ � n C�

� � �! � fCm�nBXg. The activities of
the oxidized �afCmAXg� and the reduced �afCm�nBXg�
forms of the solid compound are proportional to their
mole fractions in the mixed crystal which is formed by
the redox reaction [8]. If the densities of these two forms
are not signi®cantly di�erent, the formal concentration
of the ions A and B are related to their activities as
cA � qd � afCmAXg and cB � qd � afCm�nBXg, where qd is a
common density in mol/cm3. A di�usion of ions in the
crystal is usually much slower than in the solution.
In concentrated electrolytes it is safe to assume that
the activity of dissolved ions at the surface of the
particle is the same as in the bulk of the solution
(a�C��;x�0 � a�C��;1). So, the formal potential of the
redox reaction (I) can be de®ned as:

Ef � E0 � �RT=F � ln a�C��;1 �3�
Some insertion compounds are electron conductors,

but many are insulators [7]. If a certain redox-active
insulator can exchange ions with the electrolyte, it can
conduct electrons by a series of faradaic reactions be-
tween the neighbouring redox sites [10, 11]. It is shown
in the Appendix that such faradaic conductivity obeys
Fick's laws of di�usion.

The simplest approach to the problem of the coupled
transport of electrons and ions is to imagine an in®nite
crystal attached to an in®nite electrode surface. The
coordinate system is situated as shown in Fig.1. The
axis z coincides with the three-phase boundary between
the electrode, the crystal and the solution. The electrode
surface is located in the x-z plane, and its body occupies
the semi-space y < 0. The remaining space (y > 0) is
divided between the crystal (x > 0) and the solution
(x < 0). The semi-axis y > 0 lies in the crystal surface
facing the solution, and the semi-axis x > 0 is placed in
the contact semi-plane between the crystal and the
electrode.

It is assumed that the Nernst equilibrium is initially
established along the axis z, where both electrons and
ions are immediately available. Then the current is
conducted over the crystal surface which is facing the

solution by the di�usion of electrons, because the ions
from the solution can readily compensate changes in
charge arising from faradaic reactions there. This sur-
face redox reaction creates a gradient of electrochemical
potential and de®nes the initial conditions for the dif-
fusion of ions into the crystal body. The ¯uxes of
electrons and ions inside the solid particle are mutually
perpendicular.

The surface di�usion of electrons is described by the
di�erential equation:

@CB=@t � De�@2CB=@y2� �4�
with the initial and boundary conditions:

t � 0; y � 0 : CB � 0; CA � C �5�
t > 0; y !1 : CB ! 0; CA ! C �6�
y � 0 : CA � CB � C �7�
y � 0 : CA;y�0 � CB;y�0 exp�u� �8�
u � nF �E ÿ Ef�=RT �9�
De�dCB=dy�y�0 � ÿiS=nFb �10�

Fig. 1 Coordinate system with a part of the crystal/solution interface
(a) and a part of the graphite surface (G)

Fig. 2 Isoconcentration lines cB � cB;x�0;y�0=10 in the dimensionless
volume of the solid particle for De � 9Dc (1), De � Dc (2) and
De � Dc=9 (3)
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where CA and CB are formal surface concentrations of
ions A and B, and C is their common surface density in
mol/cm2. It is related to the volume density by the ratio
C=qd � 10ÿ8cm.De is a di�usion coe�cient for electrons,
iS is a surface component of the current, and b is a length
of the line of contact between the electrode, the crystal
and the solution. It is assumed that b >> �pDet�1=2, for
any t, so that the edge e�ects can be neglected.

Under chronoamperometric conditions (i.e., at a
constant electrode potential E), the solutions of Eqs.
4±10 are:

CB � C�1� exp�u��ÿ1erfc y�Det�ÿ1=2=2
h i

�11�

iS � nFbC�1� exp�u��ÿ1�De=pt�1=2 �12�
Within the solid particle, the di�usions of electrons and
ions are coupled. The advance of electrons is slower than
at the surface because they must wait for ions, and the
ions cannot di�use in the direction of the y-axis because
they cannot move in front of the electrons. So, the dif-
fusion of ions is described by the di�erential equation:

@cB=@t � Dc�@2cB=@x2� �13�
with the initial and boundary conditions:

t � 0; x � 0 : cB � 0; cA � qd �14�
t > 0; x!1 : cB ! 0; cA ! qd �15�
x � 0 : cA � cB � qd �16�
y � 0; x � 0 : �cA�x�0;y�0 � �cB�x�0;y�0 exp�u� �17�
x � 0 : �cB�x�0 � qd�1� exp�u��ÿ1

erfc y�Det�ÿ1=2=2
h i

�18�
nFDc�@cB=@x�x�0 � ÿdic=dS �19�
dS � b dy �20�
where Dc is a di�usion coe�cient for ions, ic is a volume
component of the current, and S � b � y is an area of the
crystal surface which is exposed to the solution. In this
model S is in®nite. Under chronoamperometric condi-
tions, the solutions of Eqs. 13±20 are:

cB � qd�1� exp�u��ÿ1erfc x�Dct�ÿ1=2=2
h in

� y�Det�ÿ1=2=2
h io �21�

dic=dS � nFD1=2
c qd�1� exp�u��ÿ1�pt�ÿ1=2 exp ÿy2=4Det

ÿ �
�22�

Eq. 21 shows that the product of the redox reaction (I)
appears primarily near the two crystal surfaces: the one
which faces the solution (x � 0) and the one which is in
contact with the electrode ( y � 0). In both planes, the
concentration of the product decreases with the distance
from the three-phase boundary. A distribution of the
product in a real, ®nite microcrystal depends on the
ratio between di�usion coe�cient of ions and electrons.
If electrons move quickly along the surface and the ions

are slow, the ®lm of the product is formed at the outer
surface and grows inward. In the opposite case, the ®lm
is formed at the electrode surface and grows outward.
An example of three possible concentration pro®les of
the product is shown in Fig. 2.

The potential inside the crystal can be calculated by
introducing Eqs. 16 and 21 into the Nernst equation:

Ex;y � Ef � �RT=nF � ln��cA�x;y=�cB�x;y � �23�

Ex;y � Ef � �RT=nF � ln
n
exp�nF �Ex�0;y�0 ÿ Ef�=RT �:

� erf x�Dct�ÿ1=2=2
� �

� y�Det�ÿ1=2=2
� �h io

ÿ �RT =nF � ln erfc x�Dct�ÿ1=2=2
� �hn

� y�Det�ÿ1=2=2
� �io

�24�
Since lim

t!1Ex;y � Ex�0;y�0, the whole crystal acquires the
electrode potential when the redox reaction (I) is com-
pleted.

Equation 22 indicates that the current density is the
highest at the contact line b, where y � 0, and decreases
along the crystal surface. The current is obtained by
integrating Eq. ( 22 ) over the whole surface area:

ic � nFbqd�Dc=pt�1=2�1� exp�u��ÿ1
Z1
0

exp ÿy2=4Det
ÿ �

dy

�25�
The integral in Eq. 25 is equal to �pDet�1=2, so that the
volume component of the current is:

ic � nFbqd�DcDe�1=2�1� exp�u��ÿ1 �26�
This is a steady-state current because of the assumption
that the crystal has an in®nite volume, i.e. it is only a
consequence of the geometry and does not depend on
the particular transport properties of ions and electrons.
Finite crystals can be electrolysed exhaustively, and
thus they would give rise to time-dependent currents.
Here, it is important to notice that the total current
consists of the volume and the surface components:

i � nFbqdD1=2
e �1� exp�u��ÿ1 D1=2

c � 10ÿ8�pt�ÿ1=2
h i

�27�
Generally, the surface component can be neglected,

but there are systems in which only this component can
be recorded. The reduction of many organic substances
is followed by the protonisation of the product (e.g. the
quinone-hydro-quinone couple). When their solid par-
ticles are mechanically attached to the electrode and
polarised, the molecules at the surface of microcrystals
can be reduced and protonised by the faradaic con-
ductivity, but protons may not be able to penetrate
below this monolayer. So, the volume component of the
current does not exist.

For cyclic voltammetry, the solutions of Eqs. 4±10
and Eqs. 13±20 are:
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Z t

0

is�t ÿ s�ÿ1=2ds � nFbC�pDe�1=2�1� exp�ust � at��ÿ1

�28�
ic � nFbqd�DeDc�1=2�1� exp�ust � at��ÿ1 �29�
where ust � nF �Est ÿ Ef�=RT ; a � nF m=RT ; m � dE=dt
and Est is a starting electrode potential.

Eq. 29 is a formula of the polarographic wave, which
is in agreement with the steady-state conditions in the
assumed in®nite crystal.

The ®nite volume of the crystal can be simulated by
restricting the di�usion in one or both directions. A
simpler case is the restricted di�usion along the x axis.
This corresponds to an in®nite crystal membrane with
the thickness 2x0. To calculate the volume component
of the current, the condition:

x � x0 : �@cB=@x�x�x0 � 0 �30�
must be used instead of Eq. 15. The solution of Eqs. 13,
14, 16±20 and Eq. 30 for chronoamperometry is:

ic � 2nFbqd�DcDe�1=2�1� exp�u��ÿ1

1� 2
X1
m�1
�ÿ1�merfc mx0�Dct�ÿ1=2

h i( ) �31�

The factor 2 appears because the membrane has two
surfaces.

To restrict the di�usion in both x and y directions,
the conditions:

y � y0 : �dCB=dy�y�y0 � 0 �32�
together with Eq. 30 apply instead of Eqs. 6 and 15.
After the integration of current density between y � 0
and y � y0, the solution of Eqs. 4 and 13 is a volume
component of the current which passes through the
single, restricted crystal surface. For constant potential,
it is:

ic � nFbqd�DcDe�1=2�1� exp�u��ÿ1 erf�y0�Det�ÿ1=2=2
n i

� 2
X1
p�1
�ÿ1�p erf px0�Dct�ÿ1=2 � y0�Det�ÿ1=2=2

� �h
ÿerf px0�Dct�ÿ1=2

� �i
�
X1
m�1
�ÿ1�m erf �m� 1=2�y0�Det�ÿ1=2

� �h
� erf �mÿ 1=2�y0�Det�ÿ1=2

� �
ÿ2 erf my0�Det�ÿ1=2

� �i
� 2

X1
p�1

X1
m�1
�ÿ1�p�m erf px0�Dct�ÿ1=2

�h
� �m� 1=2�y0

� �Det�ÿ1=2� � erf px0�Dct�ÿ1=2 � �mÿ 1=2�
�

� y0�Det�ÿ1=2
�
ÿ 2erf px0�Dct�ÿ1=2

�
� my0�Det�ÿ1=2

�io
�33�

This result applies to hypothetical conditions which are
not entirely realistic, but it shows the general in¯uence
of the ®nite volume on the calculation of currents. It is
most probable that for real microcrystals the solutions
can be obtained only by numerical simulation. It is not
a purpose of our paper to pursue this further, but
merely to establish the general approach to the prob-
lem. However, it is obvious that the speci®c response of
a particular microcrystal depends on its geometry. So,
the current in abrasive stripping voltammetry is an
average response of many di�erent geometric forms of
microcrystals.

Finally, the redox reactions of conductive insertion
compounds can be brie¯y investigated using the same
model of an in®nite crystal. At the surface of a con-
ductive solid particle, the current obeys Ohm's law:
i � U=R, where Uy � �Ey� ÿ Ey�0. The resistance R in-
creases with the distance from the electrode surface:
R � qRy, where qR is a speci®c resistance. A charge
which is needed to reduce a certain area Sr of the surface
is equal to Q � nF CBSr , and the current needed to
expand this area is i � nFbd�CByr�=dt, because Sr � byr.
The surface concentration CB is de®ned by Eqs. 5±8. As
the ®rst approximation, it can be assumed that the
potential of the whole area Sr is equal to the electrode
potential, so that dCB=dt � 0 inside the area and
CB � C�1� exp�u��ÿ1. Outside this area CB � 0. This is
a concept of the advancing front. It enables the calcu-
lation of the surface current by solving the simple
di�erential equation:

nFbC�1� exp�u��ÿ1dy=dt � U=qRy �34�
The solution is: yr � kyt1=2 �35�
where: ky � �2U�1� exp�u��=nFbCqR�1=2

Hence: Sr � bkyt1=2 �36�
and: is � Uqÿ1R kÿ1y tÿ1=2 �37�

The surface component of the current decreases with
the square root of time, as it does in the electron dif-
fusion model (see Eq. 12).

A gradient of electrochemical potential is created in
that part of the crystal which is covered by the reduced
area Sr. The ions enter the lattice only through Sr and
di�use parallel to the electrode surface. The perpen-
dicular component of the electrochemical potential
gradient causes the movement of electrons from the
electrode into the lattice. So, the density of the volume
component of the current is equal throughout the re-
duced area Sr. This current can be calculated by solving
the di�erential equation (Eq. 13), together with Eqs.
14±17, 19, 20 and a new boundary condition:
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x � 0 : �cB�x�0 � �1� exp�u��ÿ1qd �38�
The solution is:

ic=Sr � nF qd�Dc=pt�1=2�1� exp�u��ÿ1 �39�
Hence:

ic � nFbqd�Dc=p�1=2ky �1� exp�u��ÿ1 �40�
The solution is again a steady-state current because of
the assumed in®nite volume of the crystal.

The concept of the advancing front is only a rough
approximation in which a continuous change of the
potential on the crystal surface and the accompanying
distribution of surface concentrations of ions B are
neglected. However, it can be useful for the calculation
of redox reactions with the insertion in solid, conductive
particles with large volume and small surface area, such
as a hemisphere. If electrons are conducted over the
®nite surface very quickly, we can assume that the po-
tential of the whole surface becomes equal to the elec-
trode potential at the very beginning of the experiment,
even before the ions start to di�use into the lattice. This
means that the surface component of faradaic current
behaves like a capacitive current: in the chronoamper-
ometric measurement they are usually both neglected.
This assumption simpli®es the boundary conditions for
the di�usion of ions because it implies that the con-
centration of ions B at the surface does not depend on
the distance from the three-phase boundary. The vol-
ume component of faradaic current in the hemispherical
particle with the radius r0 can be calculated by solving
the following equations:

@�rcB�=@t � Dc @
2�rcB�=@r2

� � �41�
t � 0; 0 � r � r0 : cB � 0; cA � qd �42�
t > 0; r � r0 : �cB�r�r0 � qd�1� exp�u��ÿ1 �43�
Equation 41 is the condensed form of the well known
equation

@cB
@t
� Drÿ2@ r2@cB=@r

ÿ �
=@r:

�@cB=@r�r�r0 � ic=nFSDc �44�
S � 2r20p �45�
The solutions are:

ic � nF qd�1� exp�u��ÿ1
(
2r20�pDc=t�1=2

� 1� 2
X1
p�1

exp ÿp2r20=tDc

ÿ �" #
ÿ 2r0pDc

)
�46�

cB � qd�1� exp�u��ÿ1�r0=r�
(
erfc �r � r0��Dct�ÿ1=2=2

h i
ÿ erfc �r0 ÿ r��Dct�ÿ1=2=2

h i

�
X1
p�1

erfc �2p � 1�r0 � r� ��Dct�ÿ1=2=2
h i

ÿ
X1
p�1

erfc �2p � 1�r0 ÿ r� ��Dct�ÿ1=2=2
h i)

�47�

This result can be used to analyse the response in
abrasive stripping voltammetry of conductive solid
compounds if a certain statistical distribution of radii of
particles is applied. However, by this approximation the
speci®c geometric forms of various microcrystals are
entirely neglected. So, the application of Eqs. 46 and 47
may appear rather limited.

Conclusions

With an increasing number of studies devoted to the
voltammetric behaviour of microparticles, it becomes
more and more important to attain a detailed under-
standing of the underlying principles of charge and ion
propagation during the electrochemical reactions. Ex-
perimental studies have shown that some reactions are
initially surface con®ned and only later proceed as a
volume reaction [12, 13], whereas others, from the very
beginning, advance throughout the crystals [14]. A
theoretical treatment of the very simple model of the
three-phase boundary which exists when a crystal is
attached to a solid electrode surface allows the follow-
ing conclusions: (a) The three-phase boundary is always
the starting line for the reaction front, independently of
the geometry of the particle and its conductivity. (b)
The reaction will be surface con®ned when the di�usion
of ions into the bulk of the crystal is impossible or very
slow. (c) Generally, the net current is the sum of a
surface current and a bulk current. (d) In the case that
both the surface and the bulk reaction proceed at
comparable rates, the reaction front expands from the
three-phase boundary as a space with exponential
borderlines in the x and y directions. (v) The surface
current will be negligible in cases where the bulk
reaction is dominating.

In the theory of these redox reactions, the mass
transfer must be calculated by a three-dimensional dif-
fusion model, which can be reduced to the two-dimen-
sional model in the case of favourable symmetry of the
system. This is because in principle the concentrations
of the redox species on the surface of the particle are
functions of the time and the distance from the three-
phase boundary. This condition applies to both electron
conductors and insulators possessing faradaic conduc-
tivity. However, if the electron conductivity of the solid
particle is very high and its surface area is relatively
small, the approximation of the quickly advancing front
may be used, which simpli®es the calculations signi®-
cantly. This approximation is based on the assumption
of a uniform distribution of redox species on the surface
of the particle as an initial condition for the di�erential
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equation describing the di�usion of ions through the
particle. It was previously applied to thin solid ®lm
electrodes [15, 16] and in this paper to small hemi-
spherical particles. However, its application is restricted
to very good electron-conducting materials.

Thermodynamic and kinetic analyses indicate that
redox-active insulators can transfer electrons by a series
of electron exchange reactions. However, if this faradaic
conductivity is very low, the total current will also be
rather small, regardless of the mobility of ions in the
solid, because the theory shows that the conductance of
electrons is essential for the overall chronoamperomet-
ric and voltammetric responses.

Appendix

If a redox reaction

A� e  ���! B �A1�
is in equilibrium, an exchange reaction

A� B  ���! B�A �A2�
kcAcB � kcBcA �A3�
can be formulated by analogy to the exchange reaction which
exists in the equilibrium of two redox couples. In the mixed crystal
which consists of nonmetallic redox components A and B, the
change of the concentration of the component B at a certain po-
sition x depends on the di�erence in rates of its exchange reactions
with the neighbouring components A.

d�cB�x=dt � k�cB�xÿdx�cA�x � k�cA�x�cB�x�dx

ÿ k�cA�xÿdx�cB�x ÿ k�cA�x�dx�cB�x
�A4�

By assuming that

�cB�x�dx � �cB�x � �@cB=@x�x�dxdx �A5�
�cB�xÿdx � �cB�x ÿ �@cB=@x�xÿdxdx �A6�
�cA�x � �cB�x � qd �A7�
one obtains

d�cB�x=dt � kqddx��@cB=@x�x�dx ÿ �@cB=@x�xÿdx� �A8�
where

�@cB=@x�x�dx ÿ �@cB=@x�xÿdx � d�@cB�=@x �A9�
and

d�@cB�=@x � dx @2cB=@x2
ÿ � �A10�

So

dcB=dt � kqd�dx�2 @2cB=@x2
ÿ � �A11�

The product kqd�dx�2 has dimensions of a di�usion coe�cient
(cm2=s). A di�erential dx corresponds to a distance between two
layers of atoms in the crystal.

A net ¯ux of electrons is equal to the product of the di�erence
between the rates of the exchange reactions and the distance be-
tween the reacting redox components:

je ÿ �vf ÿ vb�dx �A12�
je � fk�cB�xÿdx�cA�x ÿ k�cA�xÿdx�cB�xgdx �A13�
Using Eqs. A6 and A7, one obtains

je � ÿkqd�dx�2�@cB=@x�xÿdx �A14�
This ¯ux is caused by the gradients of electrochemical potentials in
the solid particle. As the components A and B cannot di�use, the
electrons are transferred by exchange reactions.
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